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a b s t r a c t

This paper presents a level-set framework for a typical electromagnetic design problem of
dipole antenna. In this study, the geometrical configuration of an antenna is represented by
the zero-level contour of a higher-dimensional level-set function. The governing equation
for the induced current flow on a metal surface is the Electric Field Integral Equation (EFIE),
which takes into account the electric component of the incident wave. The design objective
is formulated in terms of the surface current and incident electric field. The normal velocity
of the level-set model, which reflects the sensitivity of the objective function, is derived
from the adjoint variable method and shape derivative. By optimizing the objective func-
tion, the area with the highest current density, to which the voltage feeding should be
applied, can be reshaped. The advantages of adopting the level-set technique for electro-
magnetic design lie in its capacity for capturing sophisticated topological changes and
facilitation in mathematical representation of the design configuration. The demonstrative
examples of dipole antenna design show that the level-set method results in a fairly
smooth optimization process, where the vacuum/metal interface gradually attains its opti-
mal configuration. A series of design cases with self-adjoint and non-self-adjoint sensitivity
analyses are studied and compared to the benchmarking problems in dipole antenna.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The interest in designing antennae for more effectively receiving/reflecting electromagnetic signals has never ceased
since the well-known Maxwell’s theory was established. Particularly, over the past 30 years, it was fueled by the significant
growing demands for mobile telecommunication devices and rapid development of various powerful numerical methods,
such as Moment of Method (MoM) [1], Finite Element Method (FEM) [2] and Finite-Difference Time-Domain method (FDTD)
[3], which allow the Maxwell’s equations to be solved effectively for various frequencies. These techniques converted the
antenna design from an original ‘‘cut and try” process to an elegant engineering art with substantially shorter time and lower
cost [4]. One of the most popular methods in analyzing the properties of antenna with complex geometrical configuration
has been the Integral Equation (IE) method, which is specifically defined as the Electric Field Integral Equation (EFIE) with
the boundary condition related to the total tangential electric field [5]. Derived from the Maxwell’s equation, EFIE has played
a fundamental role in antenna design analysis [4,6] due to its superior capacity of obtaining the induced current density
through the MoM technique [1].

Since the current density largely depends on the geometry of the antenna, its design has drawn considerable attention in
topology optimization community recently. The earliest study on antenna topology optimization could be the one carried
. All rights reserved.
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out by Kiziltas et al. [7] in 2003, who optimized the material configuration for antenna patch and claimed the optimized
bandwidth increases 2.5 times. Lately, Nomura et al. applied this method to the design of dielectric resonator antennas in
the frequency domain and successfully enhanced the bandwidths [8]. In these two studies, the antenna was modeled by
the density-based Solid Isotropic Material with Penalization (SIMP) method [9], in which the presence or absence of mate-
rials was denoted by elemental relative density in either 1 (metal) or 0 (vacuum/air), respectively. To make the optimization
well-posed, the discretized {0,1} density is usually relaxed to continuous [01] density in the optimization [9,10]. However,
such a relaxation could lead to an ambiguous representation (i.e. intermediate density, neither 0 nor 1) in the optimal struc-
tures. For this reason, some special techniques like the exponential penalization on the relative density in SIMP [10] or non-
linear diffusion [11] were developed to deal with this problem. Despite some preliminary work in literature [7,8], there is a
lack of continuous research. Due to a strong demand in antenna design and its potential extension to other relevant areas in
electromagnetism, such as the designs of metamaterials [12] and waveguide devices, further studies are indeed needed in
this highly promising area.

Being an effective method, topology optimization has been developed as a powerful tool capable of seeking the optimal
configuration for a range of engineering problems in structural, fluidic, thermal and electromagnetic areas [10,13–16]. In
general, there are two classes of topological models available. The first, as abovementioned, represents the geometrical con-
figuration of the structures in terms of relative density in an explicit fashion. The SIMP [9] and Evolutionary Structural Opti-
mization (ESO) [17] are two representative techniques in this category. The second embodies the structural layout with a
zero-level contour of a higher-dimensional scalar function in an implicit fashion. The level-set technique established by
Osher and Sethian [18] is one such powerful approach. Since this method can unambiguously represent the geometrical
shape and is capable of effectively tracking the dynamically-moving interfaces, its breadth of applications has been exten-
sively evidenced in the literature [19–21], including various structural optimization [22–24], metamaterial design [25] and
inverse scattering problems (shape reconstruction from scattered waves) [26,27]. However, limited studies are currently
available in the level-set based topology optimization for electromagnetic antenna design.

As one of the most typical examples in electromagnetism, the design of dipole antennas signifies a class of interesting prob-
lems with considerable theoretical and practical values. The conventional dipole antennas usually consist of two bilaterally
symmetrical conductive arms separated by an insulator at the symmetric point. The bandwidth of such antennas is closely re-
lated to the geometrical configuration of the arms. In fact, the names of several classical dipole antennae are derived from their
arm shape, such as rod, tapered and triangular dipole antennas (Fig. 1). It should be noted that the antennas in Fig. 1b and c have
a much wider bandwidth than that in Fig. 1a due to their non-rectangular shapes. One effective approach to the design of the
dipole antenna is to find the optimal geometrical configuration for the arms, so that the symmetric point, to which the voltage
feeding is applied, has the highest current density. Other methods for dipole antenna design are also available, but beyond the
scope of this paper. Interested readers can consult the literature [4] for more information in this regard.

In the level-set model, the design domains occupied by two phases, namely the vacuum space and metal, are implicitly
expressed by a level-set function, which takes positive or negative value for them, respectively. The surface current is in-
duced by the incoming incident wave and governed by EFIE [5]. In this paper, the cost function is defined as the inner prod-
uct of the surface current and incident electric field to facilitate the optimization. However, to demonstrate the effectiveness
of level-set framework for antenna design with different meaningful objectives, we also used the current density as a cost
function in some of numerical tests. The sensitivity of the objective function with respect to the change in metal configura-
tion is derived from the adjoint variable method and shape derivative, which defines the normal velocity to drive the level-
set model toward an optimum. The EFIE and its adjoint system used for the sensitivity analysis will be solved by MoM [1], in
which the solid (metal) phase is discretized into adaptive triangular mesh. Unlike traditional size and shape optimization
reported in antenna design literature, the present level-set based technique optimizes the size, shape and topology of the
metal structure concurrently. The illustrative examples demonstrate that such a formulation is capable of generating the
part with the highest current density properly.

The organization of this paper is as follows. Following this introduction, Section 2 briefly reviews the scattering problem
of EFIE and then introduces the adjoint variable method and shape derivative in electromagnetic problems. Section 3 pre-
sents the level-set model and associated numerical issues. Section 4 demonstrates two classes of examples starting from dif-
ferent initial designs to validate the effectiveness of this method. Finally, Section 5 draws some concluding remarks.
2. Scattering problem and sensitivity analysis

Consider an arbitrarily-shaped metal object that occupies domain X and is embedded in a homogeneous medium with
constant permittivity e0 and permeability l0. It is assumed that this object is excited by an incoming wave (Fig. 2) and thus
Fig. 1. The schematic configuration for (a) rod; (b) tapered; (c) triangular dipole antennas.



Fig. 2. The schematic of a metal object incited by a beam of wave. (~n and s denote the unit outward-pointing normal and tangent plane, respectively).
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current flow~u will be induced on the metal surface @X. Based on the equivalent principle and the given boundary conditions,
Maue established the Electric Field Integral Equation (EFIE) [5] to represent the scattered electric field Es

!
within the conduc-

tive object, given by
Es
!
ð~xÞ ¼ �jx A

!
ð~xÞ � rV

�!
ð~xÞ ~x 2 X ð1Þ
where j ¼
ffiffiffiffiffiffiffi
�1
p

, the magnetic vector potential A
!

and scalar potential V are defined in terms of the surface integrals, respec-
tively, as
A
!
ð~u;~xÞ ¼ l0

4p

Z
@X

~uGð~x; ~x0Þds ð2Þ

Vð~u;~xÞ ¼ 1
4pe0

Z
@X

rð~uÞGð~x; ~x0Þds ð3Þ
The Green’s function Gð~x; ~x0Þ ¼ e�jkRð~xÞ=Rð~xÞ, which is related to the distance R ¼ j~x� ~x0j between an observation point~x and a
source point ~x0 2 @X, is associated with the wave number k ¼ x ffiffiffiffiffiffiffiffiffiffil0e0

p ¼ 2p=k0, where x and k0 refer to the frequency and
wavelength of the incident wave, respectively. The dependence of the surface charge density r on the current is expressed by
the surface continuity equation, given by
rs �~uþ jxr ¼ 0 ~x 2 @X ð4Þ
with the surface divergence operator rs� ¼ @~t1=@x1 þ @~t2=@x2, where~t1 and~t2 are two orthogonal unit vectors on tangent
plane s (Fig. 2). From Eq. (4), the scalar potential in Eq. (3) becomes
Vð~u;~xÞ ¼ j
4pxe0

Z
@X
rs �~uGð~x; ~x0Þds ð5Þ
The projection of total electric field E
!
¼ ES
!
þ EI
!

, namely the summation of the scattered and incident fields, vanishes on the
tangential surface, leading to
~n� E
!
¼~n� ðES

!
þ EI
!
Þ ¼ 0 ~x 2 @X ð6Þ
Thus the EFIE equation becomes
~n� EI
!
¼~n� ðjx A

!
ð~uÞ þ rV

�!
ð~uÞÞ ~x 2 @X ð7Þ
in which we drop the dependency on~x for conciseness. In addition, the normal component of the currents vanishes on sur-
face @X, leading to ~u �~n ¼ 0.

Multiplying a testing linear vector defined in tangential space f~v : ~v 2W1;1;~v 2 sg (W1,1 is the first-order Sobolev space),
one can obtain the weak form of EFIE given by
~v ;~n� EI
!� �
¼ jx ~v ;~n� A

!
ð~uÞ

� �
þ ~v ;~n�rV

�!
ð~uÞ

� �
ð8Þ
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in which the inner product h~a;~bi ¼ h~a;~bi@X ¼
R
@X
~a �~bds denotes an integration over the surface~x 2 @X (for the conciseness of

expression, the subscript @X is dropped in the formulae).
To observe the sensitivity of this weak form of EFIE with respect to the geometrical change of the solid (metal) phase, we

define a potential function as
Pð~u;~v ; @XÞ ¼ � ~v ;~n� EI
!� �
þ jx ~v ;~n� A

!
ð~uÞ

� �
þ ~v ;~n�rV

�!
ð~uÞ

� �
ð9Þ
If the domain X changes to Xt1 ¼ Xþ dX ¼ ðIþ ðt1 � tÞ~hÞX along the direction ~h 2W1;1 from time t to t1, its surface @X
changes correspondingly to @Xt1 ¼ @Xþ d@X, where symbol I stands for an identity. Within the time increment Dt = t1 � t,
the time limit of the difference of the first term on the right-hand side of Eq. (9) vanishes as the incident electric field EI

!
is

invariant over the domain, given by
lim
t!0
�1

t
~v ;~n� EI

!� �
@Xt1

� ~v;~n� EI
!� � !

¼ 0 ð10Þ
By taking into account ~a � ð~b�~cÞ ¼~b � ð~c �~aÞ ¼~c � ð~a�~bÞ, the time limit of the second term in Eq. (9) is given by
lim
t!0

jx
t

~v ;~n� A
!
ðuðt1Þ
��!

Þ
� �

@Xt1

� ~v ;~n� A
!
ðuðtÞ
��!
Þ

� � !

¼ lim
t!0

jx
t

~v ;~n� A
!
ðuðt1Þ
��!

Þ
� �

� ~v ;~n� A
!
ðuðtÞ
��!
Þ

� �� �
� lim

t!0

jx
t

~v ;~n� A
!
ðuðt1Þ
��!

Þ
� �

@ðdXÞ

� lim
t!0

jxl0

4pt
~v �~n;

Z
@X1

uðt1Þ
���!

Gds
� �

� ~v �~n;
Z
@X

uðtÞ
��!

Gds
� �� �

ð11Þ

� jxl0

4p
~v �~n;

Z
@X
ðlim

t!0
ðuðt1Þ
���!

� uðtÞ
��!
Þ=tÞGds

� �

¼ jxl0

4p
~v �~n;

Z
@X

~u;@XGds
� �
with !u;@X ¼ lim
t!0
ðuðt1Þ
��!

�uðtÞ
��!
Þ=t. Since

R
@X rf
�!
�~bds ¼ �

R
@X frs �~bdsþ

R
@Xrs � ðf~bÞds, we obtain
~v;~n� rV
��!
ð~uÞ

� �
¼ j

4pxe0
~v ;~n�rð rs �~u;Gh iÞ

����������!D E
¼ j

4pxe0
~v �~n;r rs �~u;Gh ið Þ

����������!D E
¼ j

4pxe0
� rs �~u;Gh i;rs � ð~v �~nÞh i þ 1;rs � rs �~u;Gh i~v �~nð Þh ið Þ ð12Þ
The last term on the right-hand side of Eq. (12) vanishes as a closed boundary @X is considered in this paper.
Substituting Eq. (12) into the limit of the third term in Eq. (9) yields,
lim
t!0

1
t

~v ;~n�rV
�!
ð~uÞ

� �
@Xt1

� ~v;~n�rV
�!
ð~uÞ

� � !
¼ � j

4pxe0
rs �~u;@X;G
� 	

;rs � ð~v �~nÞ
� 	

ð13Þ
Since the summation of Eqs. (10), (11) and (13) equals the shape derivative [28] of the potential function (P,@X) in direction~h,
we can obtain,
lim
t!0

1
t
ðPðt1Þ � PðtÞÞ ¼ P;@X ) ~h �~n; @ðPð~v ;~uÞÞ=@~nþ jPð~v ;~uÞ

D E
¼ þ jxl0

4p
~v �~n;

Z
@X

~u;@XGds
� �

� j
4pxe0

rs �~u;@X;G
� 	

;rs � ð~v �~nÞ
� 	
 �

ð14Þ
with the mean curvature calculated by j ¼ r �~n. Specially, when the P function is defined on the whole domain X, the shape
derivative should be P;@X ¼ ~h �~n; @P=@~n

D E
in Eq. (14).

Since the behavior of a dipole antenna depends on the surface current, an objective function is thus defined as the inner
product between the surface current ~u and the incident electric field over the surface @X, given by
Jð@X;~uÞ ¼ Dð~uÞ
��!

; EI
!� �

ð15Þ
The Eulerian derivative of the objective function with respect to time t is defined as
dJ=dt ¼ Dð~uÞ;~u EI
!
;~u;@X

� �
ð16Þ
where Dð~uÞ;~u ¼ @Dð~uÞ=@~u. Let~u;@X ¼ ~v in Eq. (16) and make it equal to the right-hand side of Eq. (14), in which~u;@X is substi-
tuted with the adjoint variable ~w ¼~u;@X, thus, the adjoint problem of EFIE weak form is obtained as:
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jxl0

4p
~v �~n;

Z
@X

~wGds
� �

� j
4pxe0

ð rs � ~w;Gh i;rs � ð~v �~nÞh iÞ ¼ Dð~uÞ;~u EI
!
;~v

� �
ð17Þ
The solution to the above adjoint equation, ~w, can be used as the testing function ~v in Pð~v;~uÞ because they are in the same
functional space. From Eqs. (14), (16) and (17), the variation of the objective function with respect to the boundary @X is
given by
dJ=dt ¼ Dð~uÞ;~u EI
!
; ~w

� �
¼ ~h �~n;Rð~w;~uÞ
D E

ð18Þ
with Rð~w;~uÞ ¼ @Pð~w;~uÞ=@~nþ jPð~w;~uÞ or Rð~w;~uÞ ¼ @Pð~w;~uÞ=@~n. If the normal component of ~h is set as ~h �~n ¼ Rð~w;~uÞ, the
objective function increases progressively with respect to time, as
Jð@XtþDt;~uÞ � Jð@Xt;~uÞ ¼ Dt Rð~w;~uÞ;Rð~w;~uÞh i ¼ DtR2 P 0 ð19Þ
3. Level-set model and numerical implementation

The level-set model and some associative numerical issues on the implementation of the aforementioned topological sen-
sitivity analysis for dipole antenna design are discussed in this section.

3.1. Level-set model and relevant numerical issues

In the level-set technique proposed by Osher and Sethian [29], the profile of a structure is implicitly expressed by the
zero-level contour of a higher-dimensional Lipschitz-continuous function uð~xÞ. Mathematically, the negative, zero and po-
sitive values of the level-set function divide the design domain into three territories as:
uð~xÞ < 0 8~x 2 X ð20aÞ
uð~xÞ ¼ 0 8~x 2 @X ð20bÞ
uð~xÞ > 0 otherwise ð20cÞ
One of the main advantages of the level-set model is that a sophisticated shape (e.g. the head profile in Fig. 3) can be embed-
ded in a moving surface governed by the well-know Hamilton–Jacobi (HJ) equation, as
ru
rt
þ ~Vnkruk ¼ 0 ð21Þ
where kruk is the norm of the level-set function. When the normal velocity ~Vn is coincident with the gradient direction~h
that was derived as the sensitivity in the previous section, the objective function can evolve towards an optimum.

In actual numerical implementation of the level-set algorithm, the normal velocity defined on the boundaries should be
extended to
~Vn ¼
Z
@X

Rð~w;~uÞds ¼
Z

X
cðuÞkrukRð~w;~uÞdX ð22Þ
where the delta function c(u) is the derivative of the Heaviside function which takes 0 or 1 in case u < 0 or u > 0, respectively.
Fig. 3. The level-set function (a) and its zero-level contour (b).



Fig. 4. The square and triangular meshes for the level-set model and EFIE-related problems: (a,b) 3D and 2D views of the two-layer mesh and the center
points of the triangular mesh, (c) the zoomed-in part of subfigure b at its left-top corner and (d) the level-set function defining the design domain with four
circular-shaped holes.
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The numerical approaches for solving the HJ equation are widely available and we herein adopted the commonly-used
upwind algorithm [29]. The design domain for the level-set model ðf~xj � 0:5ð1þ hÞ < x1; x2 < 0:5ð1þ hÞgÞ is discretized with
a uniform square mesh (the red grid in Fig. 4b and c).1 In this formulation, the two 2D coordinate components of~x are denoted
as x1 and x2, respectively. The mesh size is h = 1/nx when the design domain is divided evenly into nx = ny elements in the hor-
izontal and vertical directions. The reason why the domain used for level-set model is slightly larger than the one for the an-
tenna design ðf~xj � 0:5 < x1; x2 < 0:5gÞ is that a circle of nodes (Fig. 4b and c) should be embroidered at the outmost edges of
this mesh to reflect the Neumann’s boundary condition properly in the level-set model. Since EFIE and its adjoint problems are
solved in the triangular mesh (blue mesh in Fig. 4) according to MoM [1], the current vector and the adjoint variable at the cen-
ter of the triangle elements (black dots as in Fig. 4) should be mapped back to the level-set nodes (green dots in Fig. 4)
correspondingly.

Our tests revealed that the mesh quality could play a significant role in the optimization because poor meshes usually
result in considerably distorted results or even singularity when solving EFIE and its adjoint systems. For instance, if the solid
(metal) region (area with negative value in the level-set function) is homogeneously discretized as in Fig. 5a, the extremely
high and incorrectly-pointed current flows appear (Fig. 5b) due to an obvious difficulty in capturing curved boundaries
smoothly. A zoomed-in snapshot of Fig. 5b (Fig. 5c) clearly exhibits this numerical singularity. Note that in these subfigures,
the magnitude of the current is proportional to the length and thickness of the arrows. Numerical examples demonstrate
that such mesh quality also results in slow convergence or even divergence of the objective value. However, if the same re-
gion is discretized with an adaptive mesh (Fig. 5d), the current flows would become much more logical (Fig. 5e and f). Since
there are more elements around the inner boundaries where their sizes are two or three times smaller than the rest of the
parts of the metal object, the adaptive mesh represents the circular geometry in a much more precise fashion even with few-
er elements in total. Fig. 5a shows that an evenly-distributed mesh with 4100 elements failed to capture the circular bound-
aries, while an adaptive mesh with 2987 elements in Fig. 5d can represent the curved boundaries more adequately.
1 For interpretation of color in Figs. 4 and 7, the reader is referred to the web version of this article.



Fig. 5. The effect of mesh quality on the solutions to EFIE: (a) homogeneous mesh; (b) the singular surface current; (c) the zoomed-in image of subfigure (b)
in its central part; (d) adaptive mesh; (e) the well-arranged surface current and (f) the zoomed-in image of subfigure (e) in its central part.
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The adaptive mesh can be obtained by three steps: (1) obtain randomly-distributed nodes within the area occupied by
metal material; (2) triangularized these nodes by Delaunay algorithm [30]; (3) update the position of nodes by forcing a truss
structure to its static equilibrium at which the lengths of all bars would be nearly equal [31]. Steps 2 and 3 usually need to
repeat for dozens of times before the mesh reaches a well-balanced state. In this algorithm, we relate the element size to the
value of level-set function as follows:
he ¼ h maxð0:6;minð3;�2ue=umaxÞÞ ð23Þ
where ue is the value of local level-set function, h the space step of the square mesh (h = max(1/nx,1/ny)) and umax the max-
imal absolute value of the level-set function. It must be emphasized that the triangular mesh should be regenerated in each
step as its hosting metal region is dynamically changing. In accordance with the upwind algorithm, the level-set function
with a signed distance benefits the stability and accuracy of this movement considerably [20]. But such a desirable property
could be destroyed after several evolution steps. Thus, a reinitialization process, aiming to regain the signed distance as well
as maintaining the zero-level contour of the level-set function, is necessary. We herein use the reinitialization method pro-
posed by Sussman et al. by solving another HJ equation. Interested readers are directed to the literature [32] for more detail.

3.2. Method of moment for adjoint system

Since ~v �~n is located on the tangential surface, it still belongs to the testing linear vector space. Therefore, we can sub-
stitute it with vm

!
¼ ~v �~n in the adjoint equation and obtain the weak form as
jxl0

4p
vm
!
;

Z
@X

~wGds
� �

� j
4pxe0

rs � ~w;Gh i;rs � vm
!D E� 

¼ Dð~uÞ;~u EI
!
;vm
!

� �
ð24Þ
The testing function can be approximated by its subspace, a piecewise continuous functional space spanned by Ne linear

independent basis functions f~bnð~xÞ; n ¼ 1; . . . ;Neg, leading to
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vm
!
�
XNe

n¼1

In
~bnð~xÞ ð25Þ
where unknown coefficients In are defined on these Ne non-boundary edges. However, it must be noted that the boundary
edges are not included in Eq. (25) because the adjoint variable does not have normal components on these edges either.

In MoM, each basis function corresponds to one non-boundary edge shared by two adjacent triangles, only on which this
basis function has a non-zero value. This class of basis functions was firstly proposed by Glisson [33] and has been success-
fully used in the solutions to the scattered problems governed by EFIE [34]. Mathematically, it is given by
~bnð~xÞ ¼
ln

2A�n
q�n
!

~x 2 T�n

0 ~x 2 @X n ðTþn [ T�n Þ

8<
: ð26Þ
where ln denotes the length of the common edge shared by two triangles T�n with the area of A�n ; qþn
!

is a vector pointing from
the free vertex of Tþn to its inner point ~x 2 Tþn while q�n

!
points from the free vertex of the triangle T�n to point~x 2 T�n .

From the definition of basis functions in Eq. (26), we obtain
vm
!
;

Z
@X

~wGds
� �

¼ 1
2

Imlm

Z
@X

~wGds;qþm
!� �

Tþ

�
Aþm þ

Z
@X

~wGds;q�m
!

� �
T�

�
A�m

� �
ð27Þ

rs � ~w;Gh i;rs � vm
!D E
¼ lmIm rs � ~w;Gh i;1h iTþ

�
Aþm � rs � ~w;Gh i;1h iT�

�
A�m


 �
ð28Þ

D0ð~uÞ EI
!
; vm
!

� �
¼ 1

2
lmIm D0ð~uÞ EI

!
;qþm
!� �

Tþ

�
Aþm þ D0ð~uÞ EI

!
;q�m
!

� �
T�

�
A�m

� �
ð29Þ
where hvm
!
;~ai ¼ 1

2 lmðh~a;qþm
!
iTþ=Aþm þ h~a;q�m

!
iT�=A�mÞ; hc;rs � vm

!
i ¼ lmð c;1h iTþ=Aþm � c;1h iT�=A�mÞ [33,34]. The right-hand sides

having the form h~a;~biT�=A�m in Eqs. (27)–(29) are the average values within these two triangles, which can be approximated
by h~a;~biT�=A�m �~að~xÞ �~bð~xÞ for ~x 2 T�. Bringing Eqs. (27)–(29) back to Eq. (24) with c�m standing for the center points of the
mth triangle T�m, we can obtain,
jxl0
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By approximating ~w �
PNe

n¼1In
~bnð~xÞ, Eq. (30) is expressed as a system of linear equations given in a matrix form as
KI ¼ f ð31Þ
where
fm ¼
1
2

D uðcþm
!
Þ

���! !
;~u

EI
!
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!� �������!
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with Gð~x; c�m
!
Þ ¼

PNE
n¼1Gð~c�n ; c�m

!
Þ.

Finally, it should be mentioned that the discretized value of Ptð~w;~uÞ in a triangle is defined by its three edges
Ei

t ; i ¼ 1;2;3, each corresponding to two triangles ðTi�
t ; i ¼ 1;2;3Þ. Mathematically, it is approximated as
Ptð~w;~uÞ ¼ �~wt � EI
!
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with C1 = l0jx/(4p), C2 = j/(4pxe0) and ~Wt ¼
PE3
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t Þ.

3.3. Volume constraint

Although a constraint of volume fraction V0, namely the ratio of the area occupied by solid (metal) phase to the design
domain, is not always necessary in antenna design, we still consider it in the optimization to make the design results more
comparable. This is especially critical for the antennas with small volume fraction; otherwise, the optimization can be stuck
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as the volume tends to zero. However, the prescription of a volume constraint often makes the optimization more
sophisticated.

The Lagrangian method is one of the effective approaches to satisfy a prescribed volume constraint, by introducing a suf-
ficiently large multiplier to the constraint function. Besides a trial of multiplier in optimization process as suggested in [22],
the multiplier can be derived mathematically from the variational method [24,35,36]. Due to the first-order approximation
in the derivation, the multiplier needs to be rectified with some proper algorithms (e.g. Newtown method), otherwise the
volume constraint will be ruined eventually [35,36].

In this paper, we would like to adopt the bisection algorithm from the literature [35,37], which is heuristic in nature but
relatively simple, stable and efficient. This algorithm was originally used in density-based topology optimization [38] and
extended to the level-set models recently [35,37]. The key idea of this algorithm is to reduce the multiplier bisectionally.
For example, the original value is bounded by �1 < l0

1 � l0
2 <1. Then a testing Lagrange multiplier k0 ¼ 0:5ðl0

1 þ l0
2Þ is used

to evaluate the variation of the level-set function du ¼ ðkþ ~VnÞkruk, with which the new metal volume V1
0 is calculated in

terms of the increment um+1 = um + dum (m denotes the iteration step). If the new volume is larger than V0, then k0 is set as
the lower bound l1

1, otherwise set as the upper bound l1
2. In this process, the bound becomes one-half of the original one in

each iteration so that it can converge fairly quickly.
3.4. Dynamic approximation of the Heaviside function

The theoretically discontinuous Heaviside function (jump from 0 to 1 suddenly at u = 0) can be approximated by a con-
tinuous function to avoid singularity in numerical implementation [29]. In this paper, the following first-order approxima-
tion is used as
HðuÞ ¼
0 u < �g
ð1þu=gþ sinðpu=gÞ=pÞ=2 otherwise
1 u > g

8><
>: ð35Þ
where g depends on the space step h of the level-set upwind algorithm [29] and denotes the half width of a transition band,
in which H(u) changes from 0 to 1 gradually. It can be difficult to define a proper band width because a wide band could
generate an inaccurate normal velocity, leading to unexpected rupture of the structure at sensible location and causing a
sudden drop of the objective function, while a narrow band can slow down the convergence. To avoid such drawbacks,
the band width is dynamically changed in the optimization as follows: (1) a large-enough band width is defined initially
to enable the algorithm to converge quickly; (2) when the objective is substantially smaller than the former one in iteration
m, which likely indicates that a rupture could be occurring, the level-set function u is rolled back to its previous value in step
m-2. At the same time, the band width is decreased slightly. With this improvement, the fluctuation of the objective function
can be avoided while keeping a proper convergent speed.
4. Demonstrative examples

The solution to the adjoint sensitivity problem makes the optimization fairly challenging. But it is possible to make it self-
adjoint (i.e. the adjoint variable equals the solution to EFIE) by defining a special objective function similar to the mean com-
pliance in structural topology optimization problems [22] and the dissipation energy in fluid problems [35]. To obtain a self-
adjoint optimization problem, simply setting Dð~uÞ ¼~u in the objective function can make the right-hand side of the weak
form of the adjoint system (Eq. (17)) have the same form as that of the EFIE equation, namely hDð~uÞ;~u EI

!
;~vi ¼ hEI

!
;~vi. Math-

ematically, this objective function is given as
Jð@X;~uÞ ¼ ~u; EI
!� �

ð36Þ
It must be pointed out that this objective function bears a considerable equivalence to the current density because the cur-
rent flow is parallel to the incident electrical field at the metal surface except on some boundaries. Unlike other physical
properties such as the radiation pattern, gain and bandwidth that are often used to evaluate the performance in various
antennas, the properly-distributed current density on the metal surface does not seem to be a direct goal in antenna design.
It is however a basis for all those properties as it is directly induced by the incident wave and consequently determines the
electromagnetic fields. Particularly for dipole antennas, the current density is rather critical as the point with the maximal
current density is often the location to form a gap, across which the voltage difference reflecting the signal reception is max-
imized [39].

In all the following examples, the incident wave propagates along �x3 direction and the electric component along x1 axis
(Fig. 6), namely Einc ¼ e�jkz½1 0 0 �T . It is assumed that the wavelength is 10, much larger than the unit squared design do-
main ranging from �0.5 to 0.5. Since we only consider the 2D examples in this paper, the objective function is defined as an
integral over X, resulting in Rð~w;~uÞ ¼ @Pð~w;~uÞ=@~n.



Fig. 6. The antenna incited by the horizontal (x1) incident waves with only electric component.
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4.1. Self-adjoint example

The first example (Case 1) considers a design process starting from a circular metal object (Fig. 7a). Fig. 7 displays the
progression of the objective function together with some intermediate designs that are arranged in clockwise direction cor-
responding to the red dots in the objective curve. The snapshots in Fig. 7 exhibit the evolution process for the solid phase
(metal) with the colors indicating the normalized magnitude of the real part of current flow (red/blue represents large/small
magnitude, respectively). It is observed that in this case, the circle is gradually stretched in the horizontal direction with the
top and bottom parts becoming flattened in the first 10 iterations (m = 10, Fig. 7b). Then two small notches start emerging in
the top and bottom edges (m = 20, Fig. 7c), where they have a higher current density (red in color or black in grey print). The
notches become wider and deeper in the following iterations (i.e. m = 30–70, Fig. 7d–h), stretching the metal region contin-
uously. The objective curve (Fig. 7) indicates that it rises slowly in the beginning, when there is no shallow notch. But it in-
creases sharply when the notches become deeper, and the connector becomes thinner in the later stages (e.g. Fig. 7d–f).
Quantitatively, the curve shows that the final objective is hundreds of times larger than the initial one.

The normalized mean current density distribution with respect to its depth in vertical direction (x2) along horizontal (x1)
axis for the final result is plotted in Fig. 8a, which clearly shows that the middle part has a strong current density concen-
tration. According to the role of dipole antenna design, the part with the highest current density should be the place where
the metal object is separated to generate a gap for the input of voltage feeding (Fig. 8b) [39].

From the evolution process showed in Fig. 7, the design is purely a shape optimization as no topological change takes
place throughout the process. It is the fact that this level-set method is unable to create holes in the optimization because
Fig. 7. The design history for the example under horizontal wave (Case 1 from the initial design with single circle).



Fig. 8. (a) The current density distribution in horizontal direction and (b) the dipole antenna obtained by separating the part with maximal current density.
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its normal velocity is derived in terms of the shape derivative. But when the initial structures have multiple holes or sepa-
rated parts (Cases 2–6 below), the topologies can vary during the optimization with the mergence of the holes and parts.
Similar initial designs have been widely used for the level-set method in structural topology optimization [24]. For this rea-
son, we prefer using the term of ‘‘topology optimization” rather than ‘‘shape optimization with the possibility of merging
holes” in the paper.

The second case (Case 2) starts from two separate identical circles with their central points located at the same height (i.e.
x2 = 0) (Fig. 9a). Again, the objective value rises slowly in the beginning while the two circles are stretched horizontally
(m = 0–60 in Fig. 9a–f). As these two solids merge from Fig. 9f and g, there is a swift jump in the objective function due
to such a significant topological change. Then the design optimization goes on with a further increase in the objective func-
tion, finally shaping the antenna into a long dumb-like structure (Fig. 9i). After this stage, the shape of the structure con-
Fig. 9. The optimization history of the objective function and topological design (Case 2 from the initial design with the dual circles).
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verges with a slight fluctuation of the objective from Fig. 9i and j. Similarly to the previous case, the middle part of this struc-
ture should be sectioned for voltage feeding.

To further illustrate the capability of topology optimization in this problem, the structures with multiple holes are also
used as the initial designs in the following two cases (Cases 3 and 4) for the self-adjoint example. In Case 3, three initial cir-
cular holes gradually diminish and the structure takes a bar-like shape with non-uniform height in the first 80 iterations
(Fig. 10a–h). Finally, the bar takes an elegant dumb-like shape with an extremely thin connector in its middle point
(Fig. 10i and j). Since the side edges of the initial structure are close to the design boundaries, such solid edges reach the side
boundaries quickly and stay there permanently, leaving the final structure with flat side edges. The contours in Fig. 10j indi-
cate that the current density attains its highest value at the middle of the thin connector, which can be the voltage feeding
location for the dipole antenna.

Unlike Case 3, the four initial holes (Fig. 11a) in Case 4 break from the bottom and top edges in the beginning of optimi-
zation (Fig. 11b), shaping the metal region into a fence-like structure with three bumps, respectively, at its center and two
ends (Fig. 11b–f). Then the central bump diminishes gradually (Fig. 11g–i), finally becoming a flat bar connecting two elegant
drop-like ends (Fig. 11j). The objective increases gradually during the optimization and converges in the final stage from
Fig. 11h–j. The current density again attains its highest value in the middle of the structure, thus locating the voltage feeding
here.
Fig. 10. The convergence of the objective function and evolution process for the example under horizontal wave (Case 3 from the initial design with three
circular holes).

Fig. 11. Optimization history (for Case 4 induced in the horizontal wave, self-adjoint, from the initial design with four circular holes).
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4.2. Non-self-adjoint example

Although some optimization problems happen to be self-adjoint, it may not always be the case. For this reason, we will
demonstrate how the presented level-set framework handles the non-self-adjoint problems.

By setting the following objective function as half of the inner product of the current flow itself, namely the norm of the
current density:
Jð@X;~uÞ ¼ 1
2
~u;~uh i ð37Þ
we obtain an adjoint problem according to Eq. (17)
jxl0

4p
~v �~n;

Z
@X

~wGds
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� j
4pxe0

ð rs � ~w;Gh i;rs � ð~v �~nÞh iÞ ¼~u ð38Þ
The weak form is presented as
~n� jx A
!
ð~wÞ þ rV

�!
ð~wÞ

� �
¼~n�~u ~x 2 @X ð39Þ
which shows that the incident electric field on the right-hand side of EFIE will be replaced by the solution to EFIE in the ad-
joint system.

The first case (Case 5) of non-self-adjoint example starts from a circular object as shown in Fig. 12. Unlike what happened
in Case 1 of the self-adjoint problem, the structure changes from a circle to a diamond-like shape in the initial iterations
(m = 20). Then, the structure extends itself continuously along horizontal direction. After it reaches the side boundaries,
the metal material accumulates on the boundaries, making the middle part thinner and thinner. Finally the optimization
converges after 150 iterations and a dumb-like structure with two head-to-head triangular structure is generated
(m = 188). Note that since the objective function increases thousands of times during the optimization, the convergence
Fig. 12. The snapshots of structures in the optimization (Case 5).

Fig. 13. The history of the objective function with logarithmic scale in vertical axis (Case 5).
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history is plotted in a logarithmic axis to provide a clear view of its change as in Fig. 13. It distinctly shows the objective
function continuously increasing in the beginning and intermediate stages. While in the final stage, it fluctuates slightly
as the middle part of the structure tends to become as thin as possible but it is restricted by a limited mesh size. Such a fluc-
tuation indicates that, compared with the self-adjoint example, the objective function appears more sensitive to a perturba-
tion to the shape of the solid phase.

For comparative purposes, another non-self-adjoint case (Case 6) is presented with the similar initial structure (a square
with four circular holes) to the self-adjoint design (Case 4). The snapshots in Fig. 14 illustrate that the holes break in the
beginning of the optimization, shaping a fence-like structure with three vertical bars (m = 20–100 in Fig. 14). When the mid-
dle bump diminishes gradually (m = 180–240 in Fig. 14), we obtain a dumb-like structure with two elegant ends at iteration
330. Similarly to Case 5, the shape of the structure converges in the final stage (after iteration 300) while its middle part
keeps evolving thinner and thinner.
4.3. The comparison of the results with traditional dipole antenna

Now that a number of dipole antennas are obtained from the optimization, we can compare their performance relative to
the conventional designs in Fig. 1 with the same volume fraction. Fig. 15 shows the mean current density with respect to
Fig. 14. The snapshots of structures in the optimization (Case 6).

Fig. 15. The mean current density distribution with respect to the depth along horizontal direction for rod, triangular, tapered and our design antennas with
the same volume fraction.
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their depth along the horizontal direction for the rod, triangular, tapered and one of our non-self-adjoint designs (Fig. 14,
m = 300) antennas from left to right, respectively. Except for the rectangular rod antenna whose density distribution is al-
most flat along horizontal direction, the rests have a peak corresponding to their middle notched shapes. Obviously, the opti-
mized design presented herein provides the highest peak, which indicates that it has the best performance in terms of the
maximal current density.

It should be pointed out, however, that the current density may not be the only way to formulate the objective for an-
tenna design problems. Nevertheless, it is expected that the presented method provides a fundamental framework aiming
to accommodate other antenna design problems.
5. Concluding remarks

This paper attempted to develop a level-set framework for electromagnetic topology optimization problems. The design
of the dipole antenna is exemplified as a benchmark to validate the proposed level-set procedure. Specifically, solid (metal)
boundaries are implicitly represented by the zero-level contour of a higher-dimensional scalar level-set function. To formu-
late a design objective for antenna design, the surface current flow, induced by the electric component of the incident wave,
is calculated by solving the EFIE system. Thus, an integral form of current density over the solid phase is taken as a measure
of antenna performance.

Based on the adjoint variable method and shape derivative, the sensitivity of the objective function is derived and used as
the normal velocity for evolving the level-set model. With such normal velocity, the vacuum/metal interface gradually
moves toward an optimum. In this paper, both the self-adjoint and non-self-adjoint examples with a number of design cases
starting from different initials are presented to demonstrate the maximization of objective functions. The topology optimi-
zation clearly derives the shape with the highest current density. Thus, the voltage feeding can be placed to such a part so
that the metal strip can be converted to a true dipole antenna. Compared with conventional design of dipole antennas, the
optimized design appears to provide the highest current density.

As a first attempt, only the electric component of the incident wave is considered in this paper. The future study will take
into account the magnetic component governed by the Maxwell’s equations. Such an extension can be used for other more
interesting yet more sophisticated electromagnetic applications, such as the design of metamaterials [25]. Since the techni-
cal details in the context are applicable to three-dimensional (3D) problems straightforward, they are not included in this
paper but can be addressed in the future.
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